CBSE Sample Question Paper Term 1

Class - VIII (Session : 2021 - 22)

Class 08 - Mathematics Subject- Mathematics041 - Test - 03

Maximum Marks: 50 Time Allowed: 1 hour 30 minutes

General Instructions:

- 1. The question paper contains 50 questions
- 2. Attempt any 40 questions.
- 3. There is no negative marking.

Chapter Name	Multiple Choice Question	Total
Rational Numbers	8 (1)	8 (8)
Linear Equations in One Variable	8 (1)	8 (8)
Understanding Quadrilaterals	8 (1)	8 (8)
Data Handling	7 (1)	7 (7)
Squares and Square Roots	3 (1)	3 (3)
Cubes and Cube Roots	3 (1)	3 (3)
Exponents and Powers	7 (1)	7 (7)
Playing with Numbers	6 (1)	6 (6)
Total	50 (50)	50 (50)

CBSE Sample Question Paper Term 1

Class - VIII (Session : 2021 - 22)

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 50

General Instructions:

- 1. The question paper contains 50 questions
- 2. Attempt any 40 questions.
- 3. There is no negative marking.

1. Find the value of
$$\frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}$$
 [1]

a)
$$\frac{2b^2}{b^2 - a^2}$$

b)
$$\frac{2b^2}{b^2 + a^2}$$

c)
$$\frac{2ab}{b^2 - a^2}$$

d)
$$\frac{2a^2}{b^2 - a^2}$$

2. Tell what property allows you to compute
$$\frac{1}{3} imes \left(6 imes \frac{4}{3}\right) = \left(\frac{1}{3} imes 6\right) imes \frac{4}{3}$$

[1]

- a) Associative property of multiplication
- b) none of these
- c) Associative property of addition
- d) Commutative property of multiplication
- 3. Write the additive inverse of $\frac{13}{17}$.

[1]

a)
$$\frac{13}{17}$$

b)
$$-\frac{13}{17}$$

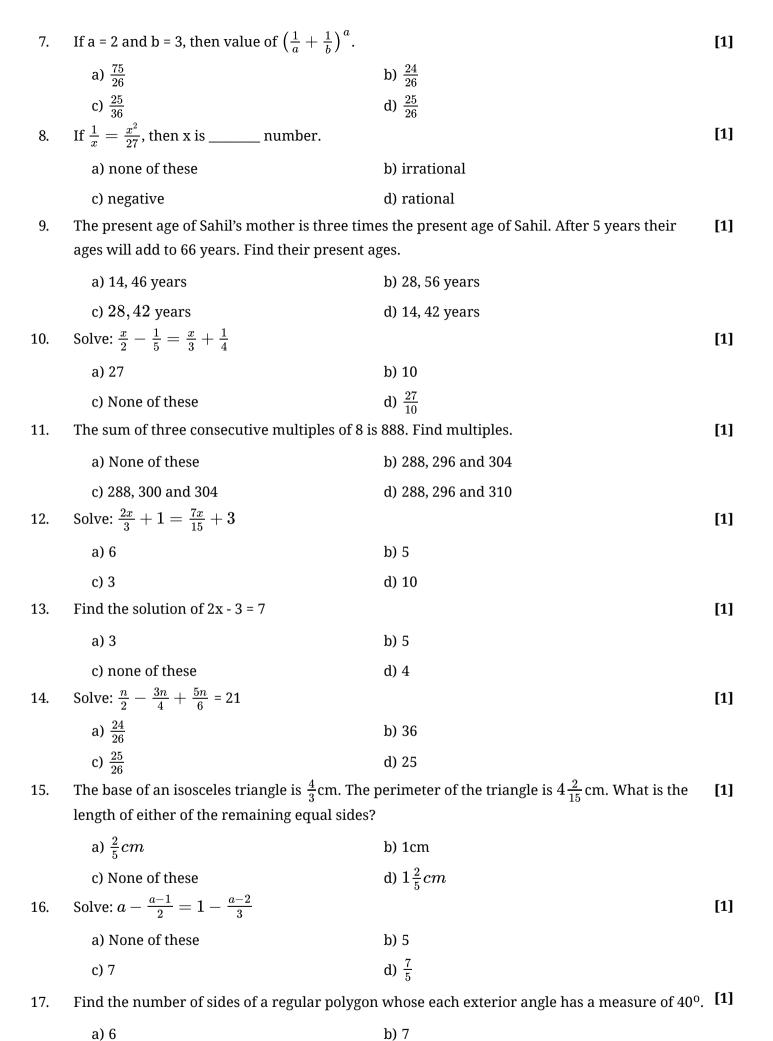
d) 1

4. The multiplicative inverse of
$$-1\frac{1}{7}$$
 is

[1]

a)
$$\frac{8}{7}$$

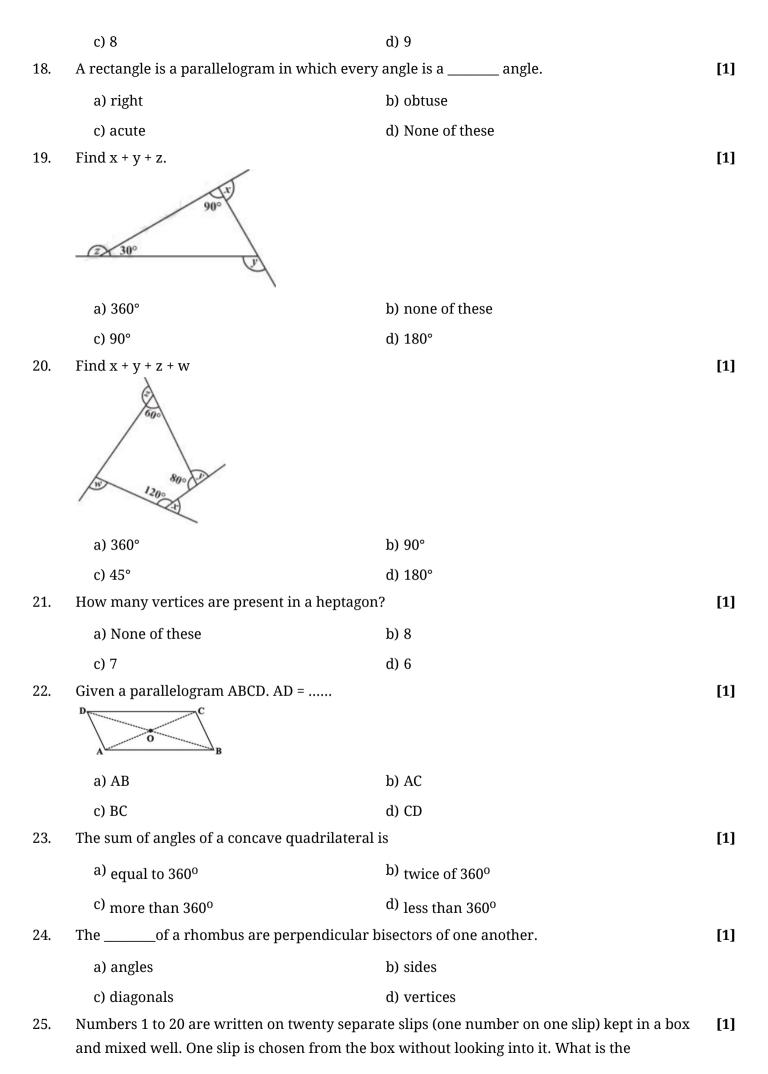
b)
$$\frac{7}{-8}$$

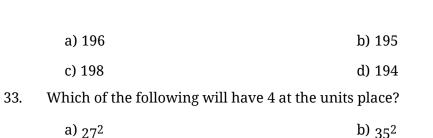

c)
$$\frac{7}{8}$$

d)
$$\frac{-8}{7}$$

a)
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{b}{4} \times \frac{1}{4} \left(\frac{-4}{7} \right) \right] = \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} - \frac{1}{4}$$
c) $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \frac{2}{3} + \left(-\frac{1}{4} \right) \times \frac{-4b}{7} - \frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[\frac{1}{4} \times \frac{2}{3} \right] - \left(\frac{-4}{7} \right)$

- a) the identity for the subtraction of rational numbers
- b) the identity for division of rational numbers
- c) the identity for the addition of rational numbers
- d) the identity for multiplication of rational numbers





probability of getting a 2-digit number? a) None of these c) $\frac{1}{10}$ [1] 26. When a die is thrown, what are the six possible outcomes? b) T, H a) 1, 2, 3, 4, 5, 6 d) None of these c) 0, 1, 2, 3, 4, 5, 6 [1] 27. Upper limit of class interval 75-85 is: b) 85 a) 10 c) 75 d) -10 28. What is the probability of getting a number through 6 numbers? [1] b) $\frac{1}{2}$ a) None of these d) 0 c) 1 29. The following pie chart represents the distribution of proteins in parts of human body. [1] Muscles $\frac{1}{3}$ Hormones Skin 10 enzymes and Bones other proteins What is the ratio of the distribution of proteins in the muscles to that of proteins in the bones? a) 1:3 b) 2:1 d) 3:1 c) 1:2 30. The colour of refrigerators preferred by people living in a locality are shown by the following [1] pictograph. How many people choose red colour? Number of people $\frac{9}{4}$ - 10 people Blue Green Red White b) 30 a) 20 d) 10 c) 40 A display of information using _____ of uniform width, their heights being proportional to 31. [1] the respective values. a) histograms b) None of these c) angles d) bars Find the perfect square number between 190 and 200. [1]

Without doing any calculation, find the numbers which are surely perfect squares. [1]

d) 62^2

A. 625 B. 347

c) 14²

- C. 658
- D. 233

a) B

- c) C
- If $\sqrt[3]{\frac{x}{y}} = \frac{3}{4}$, then $\frac{x}{y} =$ _____. [1]

b) D

d) A

- b) $\frac{64}{27}$ a) 64 d) $\frac{27}{64}$ c) 27
- 36. Find the prime factorisation of 1728. [1]
 - a) $2^3 \times 2^3 \times 3^3$ b) None of these c) $2^3 \times 2^3 \times 5^3$ d) $2^3 \times 3^3 \times 3^3$
- The cube of -25 is _____. [1] 37.
 - a) 15625 b) 50 c) -15625 d) -15635
- Find a so that $(-5)^{a+3} \times (-5)^2 = (-5)^6$ [1]
- a) 2 b) 1 d) 3 c) 4
- For a non-zero rational number p, $p^{13} \div p^8$ is equal to 39. a) p⁻¹⁹ b) p-5 d) p²¹
- 40. The standard form for 234000000 is [1]
 - b) 2.34×10^{8} a) 0.234×10^{-9} c) 2.34×10^{-8} d) 0.234×10^9
- Evaluate the exponential expression (-y) $^4 \times$ (-y) 5 , for y = 1. [1]
- a) 9 b) 2
 - c) 1 d) -1

[1]

[1]

a) 68

b) 56

c) 12

d) 44

For any two non-zero rational numbers x and y, $x^4 \div y^4$ is equal to

a) $(x \div y)^0$

b) $(x \div y)^4$

c) $(x \div y)^1$

d) $(x \div y)^8$

Find the value of n so that $(6)^{n+3} \times (6)^5 = (6)^{11}$

[1]

[1]

a) 2

b) 1

c) 6

d) 3

Generalised form of a three-digit number xyz is

[1]

a) 100y + 10x + z

b) x + y + z

c) 100x + 10y + z

d) 1000x + 100y +10 z

Identify the missing digit in the number 234,4_6, if the number is divisible by 4. 46.

[1]

a) 2

b) 6

c) 5

d) 4

If $6A \times B = A8B$, then the value of A - B is

[1]

a) -2

b) -3

c) 3

d) 2

If $5 \times A = CA$ then the values of A and C are

[1]

a) A = 5, C = 2

b) A = 2, C = 5

c) A = 4, C = 2

d) A = 5, C = 1

Find A and B in the addition. A + A + A = BA

[1]

a) A = 1 and B = 5

b) A = 5 and B = 5

c) A = 1 and B = 1

d) A = 5 and B = 1

Find the values of the letters in following:-

[1]

- 2AB
- + A B 1
- B18
 - a) A = 4, B = 5

b) A = 2, B = 7

c) None of these

d) A = 4, B = 7

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

1. **(a)** $\frac{2b^2}{b^2-a^2}$

(a)
$$\frac{1}{b^2 - a^2}$$

Explanation: $\frac{a^{-1}}{a^{-1} + b^{-1}} + \frac{a^{-1}}{a^{-1} - b^{-1}}$

$$= \frac{\frac{1}{a}}{\frac{1}{a} + \frac{1}{b}} + \frac{\frac{1}{a}}{\frac{1}{a} - \frac{1}{b}}$$

$$= \frac{\frac{1}{a}}{\frac{a+b}{ab}} + \frac{\frac{1}{a}}{\frac{b-a}{ab}}$$

$$= \frac{b}{b+a} + \frac{b}{b-a}$$

$$= b[\frac{1}{b+a} + \frac{1}{b-a}]$$

$$= b[\frac{b-a+b+a}{b^2-a^2}]$$

$$= b[\frac{2b}{b^2-a^2}]$$

$$= 2b^2$$

2. **(a)** Associative property of multiplication

Explanation: The answer is <u>associative property of multiplication</u> as the product follows the associative property of multiplication rule which is $a \times (b \times c) = (a \times b) \times c$

3. **(b)** $-\frac{13}{17}$

Explanation: The additive inverse of any rational number is the same number with the opposite sign, here the rational number is $\frac{13}{17}$, as its additive inverse will be $\frac{-13}{17}$.

4. **(b)** $\frac{7}{-8}$

Explanation: We know that, if the product of two rational numbers is 1, then they are multiplicative inverse of each other.

Given number is $-1\frac{1}{7}$, i.e. $\frac{8}{7}$.

Let the multiplicative inverse of $-\frac{8}{7}$ be x.

- $\Rightarrow \quad rac{-8}{7} imes x = 1$
- \Rightarrow $x = 1 \times \left(-\frac{7}{8}\right)$ [by cross-multiplication]
- $=\frac{-7}{8} \text{ or } \frac{7}{-8}$

Hence, $\frac{7}{-8}$ is the multiplicative inverse of $-\frac{8}{7}$

5. **(a)** $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$

Explanation: We know that, the distributive property of multiplication over addition for rational numbers can be expressed as $a \times (b + c) = ab + ac$, where a, b and c are rational numbers.

Here, $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$ is the example of distributive property of multiplication over addition for rational numbers.

6. **(d)** the identity for multiplication of rational numbers

Explanation: One (1) is the identity for multiplication of rational numbers. That means, If a is a rational number. Then, a.1 = 1.a = a

7. **(c)** $\frac{25}{36}$

Explanation: Given, a = 2, b = 3 so,

$$\left(\frac{1}{a} + \frac{1}{b}\right)^a = \left(\frac{1}{2} + \frac{1}{3}\right)^2$$
$$= \left(\frac{3+2}{6}\right)^2$$

$$= \left(\frac{5}{6}\right)^2$$
$$= \frac{25}{36}$$

8. **(d)** rational

Explanation:
$$\frac{1}{x} = \frac{x^2}{27}$$

$$x^3 = 27$$

$$x = \sqrt[3]{27}$$

x = 3 and x is a rational number

9. **(d)** 14, 42 years

Explanation: Let sahil's age = x

sahil's mother's age = 3x

after 5 years their age will be

sahil's age =
$$x+5$$

sahil's mother's age = 3x + 5

According to question,

$$x + 5 + 3x + 5 = 66$$

or,
$$4x + 10 = 66$$

or,
$$4x = 66 - 10$$

or,
$$4x = 56$$

by transpposing

or,
$$x = 56/4$$

or,
$$x = 14$$
.

Now sahil's age = 14years

sahil's mothers age = 42years

10. **(d)** $\frac{27}{10}$

Explanation:
$$\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$$

or,
$$\frac{(5x-2)}{10} = \frac{(4x+3)}{12}$$

by cross multiplication

or,
$$60x - 24 = 40x + 30$$

or,
$$60x - 40x = 30 + 24$$

or,
$$20x = 54$$

or,
$$x = \frac{54}{20}$$

in lowest term

or,
$$x = \frac{27}{10}$$

11. **(b)** 288, 296 and 304

Explanation: let first number be = x

second multiple of 8 = x + 8

third multiple of 8 = x + 16

According to question

$$x + x + 8 + x + 16 = 888$$

or,
$$3x + 24 = 888$$

or,
$$3x = 888 - 24$$

or, $3x = 864$

or,
$$x = \frac{864}{3}$$

or,
$$x = 288$$

now the first multiple of 8 = 288

second multiple of 8 = 296

third multiple of 8 = 304

Explanation:
$$\frac{2x}{3} + 1 = \frac{7x}{15} + 3$$

by transposing
or,
$$\frac{2x}{3} - \frac{7x}{15} = 3 - 1$$

or, $\frac{10x - 7x}{15} = 2$

or,
$$\frac{30x-7x}{15} = 2$$

or,
$$3x = 30$$

or,
$$x = 10$$

13. **(b)** 5

Explanation: by transposing, the signs will be change

$$2x-3=7$$

$$2x=7+3$$

$$2x=10$$

The correct option is 5

Explanation:
$$\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$$

by L.C.M of 2, 4 and 6 = 12
or,
$$\frac{(6n-9n+10n)}{12}$$
 = 21

or,
$$\frac{7n}{12} = 21$$

or,
$$7n = 252$$

or, n =
$$\frac{252}{7}$$

or,
$$n = 36$$

15. **(d)** $1\frac{2}{5}cm$

Explanation: The base of an isosceles triangle = $\frac{4}{3}$ cm

let two equal sides are = x

perimeter of the triangle = $4\frac{2}{15}$ cm

the perimeter of the triangle = sum of all sides

$$\frac{62}{15} = x + x + \frac{4}{3}$$

or,
$$\frac{62}{15} = 2x + \frac{4}{5}$$

$$\frac{62}{15} = x + x + \frac{4}{3}$$
or, $\frac{62}{15} = 2x + \frac{4}{3}$
or, $\frac{62}{15} = \frac{(6x+4)}{3}$

By crossmutliply,

or,
$$186 = 90x + 60$$

or,
$$186 - 60 = 90x$$

or,
$$126 = 90x$$

or,
$$\frac{126}{90} = x$$

or, $\frac{7}{5} = x$

or,
$$\frac{1}{5} = x$$

$$1\frac{2}{5}cm = x$$

16. **(d)** $\frac{7}{5}$

Explanation: $a - \frac{a-1}{2} = 1 - \frac{a-2}{3}$

By L.C.M on both sides

$$or, rac{2a-a+1}{2} = rac{3-a+2}{3} \ or, rac{a+1}{2} = rac{5-a}{3}$$

$$or, \frac{a+1}{2} = \frac{5-a}{3}$$

By cross-multiply,

or,
$$3a + 3 = 10 - 2a$$

by transposing

or,
$$3a + 2a = 10 - 3$$

or,
$$a = \frac{7}{5}$$

17. **(d)** 9

Explanation: Number of sides = $\frac{360^0}{exterior-angle}$

$$n = \frac{360^0}{40^0} = 9$$

18. **(a)** right

Explanation:

Let an angle of a rectangle = x

 $x + x + x + x = 360^{\circ}$ (All angles a of a rectangle are equal)

$$4x = 360^{\circ}$$

$$\mathbf{x} = \frac{360^0}{4}$$

$$x = 90^{0}$$

19. **(a)** 360°

Explanation: Interior angle = 180 - (90 + 30) = 60° (Angle sum property)

Now x + y + z

20. **(a)** 360°

Explanation: Given is a quadrilateral. Sum of all interior angles of quadrilateral = 360°

Single side of quadrilateral = $360 - (60 + 80 + 120)^{\circ} = 360 - 260 = 100^{\circ}$

$$x + 120 = 180^{\circ}$$

$$\Rightarrow 180-120=60^{\circ}$$
 By linear pair property

$$y + 80 = 180^{\circ} \Rightarrow y = 180 - 80 = 100^{\circ}$$

$$z + 60 = 180^{\circ} \Rightarrow z = 180 - 60 = 120^{\circ}$$

$$w + 100 = 180^{\circ} \Rightarrow w = 180 - 100^{\circ} = 80^{\circ}$$

$$x + y + z + w = 60 + 100 + 120 + 80 = 360^{\circ}$$

21. **(c)**

Explanation: A heptagon is a seven-sided polygon. It is also sometimes called a septagon.

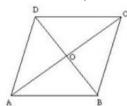
22. **(c)** BC

Explanation: Opposite sides of a parallelogram are equal

23. **(a)** equal to 360°

Explanation: We know that, the sum of interior angles of any polygon (convex or concave) having n sides

$$= (n - 2) \times 180^{\circ}$$


Therefore, the sum of angles of a concave quadrilateral = $(4 - 2) \times 180^{\circ}$

$$= 360^{\circ}$$

24. (c) diagonals

Explanation:

In a rhombus, two diagonals intersect each other at right angles and become the perpendicular bisectors

In Rhombus ABCD, consider ΔAOD , ΔAOB

AD = AB (sides of a rhombus are equal)

OD = OB (diagonals of a rhombus bisect each other).

AO = OA (common side)

 \therefore , using SSS congruency rule, $\Delta AOD\cong \Delta AOB$

$$\Rightarrow \angle AOD = \angle AOB$$

As
$$\angle AOD + \angle AOB = 180^{\circ}$$

$$\therefore \angle AOD = 90^{\circ}$$

$$\therefore AO \perp BD$$

Hence, $AC \perp BD$.

Thus, In a rhombus, the diagonals bisect each other at 90°.

25. **(d)** $\frac{11}{20}$

Explanation: Total number of outcomes = 20

2 digit number= 11(10,11,12,13,14,15,16,17,18,19,20)

probability of getting a 2 digit number = $\frac{11}{20}$

26. **(a)** 1, 2, 3, 4, 5, 6

Explanation: When a dice is thrown there are only six possible outcomes 1, 2, 3, 4, 5, 6

27. **(b)** 85

Explanation: Upper limit of class interval 75-85 is 85. Note The upper value of class interval is called its upper class limit and lower value of a class interval is called lower class limit.

28. **(c)** 1

Explanation: When there are only 6 numbers, if you select one of them, you will always be successful. So probability is 1.

29. **(b)** 2:1

Explanation: Distribution of protein in muscles = $\frac{1}{3}$

Distribution of protein in bones = $\frac{1}{6}$

Ratio of distribution of proteins in the muscles to that of proteins in the bones $=\frac{1}{3}:\frac{1}{6}=\frac{1}{3}\times\frac{6}{1}:1=2:1$

30. **(d)** 10

Explanation: $10 \times 1=10$

10 people choose red colour.

31. **(d)** bars

Explanation: A display of information using bars of uniform width, their heights being proportional to the respective values.

32. **(a)** 196

Explanation: The answer is 196 which is square of 14 and the next square number is 225 which does not lie between 190 and 200.

33. **(d)** 62²

Explanation: The unit place of the square of $62^2 = 2^2 = 4$ [$\therefore 2^2 = 4$]

Clearly, 62^2 has 4 at the unit's place.

34. **(d)** A

Explanation: The answer is 625 as the other numbers are 347, 658,233 and they cannot be perfect squares as a perfect square number never ends with 2, 3, 7, 8.

35. **(d)** $\frac{27}{64}$

Explanation: IF
$$\sqrt[3]{\frac{x}{y}} = \frac{3}{4}$$
, then $\frac{x}{y} =$ _____.

Cubing both sides,

$$\sqrt[3]{\left(\frac{x}{y}\right)^3} = \left[\frac{3}{4}\right]^3$$
$$\frac{x}{y} = \frac{27}{64}$$

36. **(a)**
$$2^3 \times 2^3 \times 3^3$$

Explanation: 1728 =
$$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

$$=2^3\times2^3\times3^3$$

Explanation:
$$(-25)^3 = (-25) \times (-25) \times (-25)$$
 = -15625 (The cube of a negative integer is negative)

38. **(b)** 1

Explanation:
$$(-5)^{a+3} \times (-5)^2 = (-5)^6$$

$$(-5)^{a+3} = (-5)^6 \div (-5)^2$$

$$(-5)^{a+3} = (-5)^{6-2}$$

$$(-5)^{a+3} = (-5)^4$$

Hence,
$$a + 3 = 4$$
,

So,
$$a = 1$$

39. **(c)**
$$p^5$$

Explanation: Using law of exponents,
$$a^m \div a^n = (a)^{m-n}$$
 [:: a is non-zero integer]

Similarly,
$$p^{13} \div p^8 = (p)^{13-8} = (p)^5$$

40. **(b)**
$$2.34 \times 10^8$$

Explanation: Given,
$$234000000 = 234 \times 10^6 = 2.34 \times 10^{6+2} = 2.34 \times 10^8$$

Hence, standard form of 234000000 is 2.34×10^8

Explanation: for
$$y = 1$$
,

$$(-y)^4 \times (-y)^5$$

$$(-1)^4 \times (-1)^5$$

42. (d) 44

Explanation: Using law of exponents,
$$a^{-m} = \frac{1}{a^m}$$
 [: a is non-zero integer]

$$(7^{-1} - 8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1}$$

$$=\left(\frac{1}{7}-\frac{1}{8}\right)^{-1}-\left(\frac{1}{3}-\frac{1}{4}\right)^{-1}$$

$$= \left(\frac{1}{7} - \frac{1}{8}\right)^{-1} - \left(\frac{1}{3} - \frac{1}{4}\right)^{-1}$$
$$= \left(\frac{1}{56}\right)^{-1} - \left(\frac{1}{12}\right)^{-1} = 56 - 12 = 44$$

43. **(b)**
$$(x \div y)^4$$

Explanation: Using laws of exponents,
$$\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m = (a \div b)^m$$
 [:: a and b are non-zero integers]

Similarly,
$$x^4 \div y^4 = \left(\frac{x}{y}\right)^4 = (x \div y)^4$$

44. **(d)** 3

Explanation:
$$(6)^{n+3} \times (6)^5 = (6)^{11}$$

$$(6)^{n+3} = (6)^{11} \div (6)^5$$

$$(6)^{n+3} = (6)^{11} \times (6)^{-5}$$

$$(6)^{n+3} = (6)^{11-5}$$

$$(6)^{n+3} = (6)^6$$

Hence,
$$n + 3 = 6$$

So,
$$n = 3$$

45. **(c)** 100x + 10y + z

Explanation: In general, any three-digit number xyz can be written as,

$$xyz = 100 \times x + 10 \times y + 1 \times z$$

$$= 100x + 10y + z$$

where x is a hundredth place digit, y is a ten's place digit and z is a unit's place digit. Hence, if it's a threedigit number, the places will be ones, tens, and hundreds from right to left.

Explanation: Last two digits number must be divisible by 4. Only 1 3 5 7 9 can be possible.

47. **(a)** -2

Explanation: $6A \times B = A8B$ $A \times B = B$ and $6 \times B = A8$ Therefore, A = 1 and B = 3 $61 \times 3 = 183$ Hence, A - B = 1 - 3 = -2

48. **(a)** A = 5, C = 2

Explanation: $5 \times A = CA$

A = 5, C = 2 $5 \times 5 = 25$

49. **(d)** A = 5 and B = 1

Explanation: Here, A + A + A = BA as the sum of 3 ones digit numbers is a two-digit number so the value of

A will be greater than 3.

Putting the value of A = 4,

4 + 4 + 4 = 12 which do not satisfy the equation.

Putting the value of A = 5,

5 + 5 + 5 = 15, which satisfies the equation.

Therefore, A = 5 and B = 1.

50. **(d)** A = 4, B = 7

Explanation: 1 + B is 8 so B = 7. B + A gives 1 in units digit. Thus A has to be 4.

